If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+24x-61=0
a = 2; b = 24; c = -61;
Δ = b2-4ac
Δ = 242-4·2·(-61)
Δ = 1064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1064}=\sqrt{4*266}=\sqrt{4}*\sqrt{266}=2\sqrt{266}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{266}}{2*2}=\frac{-24-2\sqrt{266}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{266}}{2*2}=\frac{-24+2\sqrt{266}}{4} $
| 6m+24=150 | | x8-12=6 | | 14.4y-16.998=5.6y+24.89 | | n+4(n-1)=6 | | -3(a+1)=-3-3a | | 3n-3=7n+13 | | x—2/3=1/7 | | 0.25n+1.1n=37.8 | | 117=6x+44+-10x+65 | | x–2/3=1/7 | | 15=9+a/2 | | 6x-3+7x-11=90 | | 11m-(6m-5)=2 | | 7x/12-7=x/6+3 | | u/13=3/8 | | 6-(3-c)=2 | | 13x-(5x-6)=46 | | 7x/12-7x/6=3 | | x/0.10=0.31 | | -98=-5(3x+7)+6x | | 5/4.x=65 | | 1/5x+5=1/6+x | | 5.28-0.32x=-2 | | 20x^2+14x-1=0 | | (5-x)(2x-3)=4x+7 | | 4π=w−6π | | 2(3x+4)=9 | | 12(2x-5)=3x | | 12x+5=12x-4 | | 25.93=4s+4.65 | | 2x+2x+2=45 | | 5u/6-2=7u/10 |